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Abstract

I recall some popular models for noncommutative space-time and discuss field theories on these
deformed spaces. This includes classical action functionals and quantum field theoretical investiga-
tions. I review the power-counting analysis of field theories on the Moyal plane in momentum space
and our recent renormalisation proof of noncommutativeφ4-theory based on renormalisation group
techniques for dynamical matrix models.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Geometry

Half a century of high energy physics has drawn the following picture of the microscopic
world: there are matter fields and carriers of interactions between them. Four different types
of interactions are known: electromagnetic, weak and strong interactions as well as gravity.
The traditional mathematical language to describe these structures of physics is that of
fibre bundles (see e.g.[1]). The base manifoldM of these bundles is a four-dimensional
metric space with line element ds2 = gµν(x) dxµ dxν. Matter fieldsψ are sections of a vector
bundle overM. The carriers of electromagnetic, weak and strong interactions are described
by connection one-formsA of U(1),SU(2) andSU(3) principal fibre bundles, respectively.
Gravity is the determination of the metricg by the one-formsA and sectionsψ, and vice
versa.

The dynamics of (A,ψ, g) is governed by an action functionalS[A,ψ, g], which yields
the equations of motions when varied with respect toA,ψ, g. The complete action functional
for the phenomenologically most successful model, the standard model of particle physics,
consists of numerous individual pieces when expressed in terms of (A,ψ, g).

Next, there is a clever calculus, calledquantum field theory, which as the input takes
the action functionalSand as the output returnsnumbers. There is another (much more
expensive) source of numbers: experiments. There is a remarkable agreement1 of up to 10−11

between corresponding numbers calculated by quantum field theory and those coming from
experiment. This tells us two things: the action functional (here: of the standard model) is
very well chosen and, in particular, quantum field theory is an extraordinarily successful
calculus.

1 There are of course experimental data which so far could not be derived from first principles, such as the energy
spectrum of hadrons.
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However, this can only be an approximation: taking gravity (i.e. the dynamics of the
space-time manifold) into account, quantum field theory is ill-defined. To see this, let us
recall how we measure technically the geometry of space-time. The building blocks of a
manifold are thepointslabelled by coordinates{xµ} in a given chart. Points enter quantum
field theory via the sectionsψ(x) andA(x), i.e. thevaluesof the fields at the point labelled
by {xµ}. This observation provides a way to “visualise” the points: we have to prepare a
distribution of matter which is sharply localised about{xµ}. For a perfect visualisation we
need aδ-distribution of the matter field. This is physically not possible, but one would think
that aδ-distribution could be arbitrarily well approximated. However, that is not the case,
there are limits of localisability long before theδ-distribution is reached[2].

What does this mean for quantum field theory? It means that we cannot trust traditional
quantum field theories like the (quantum) standard model because they rely onnonexisting
informationabout the short-distance structure of physics which is implicitly used in the
loop calculations.

There exist a few proposals about how to replace the space-time manifold, notably string
theory and quantum gravity. For deep background information I refer to Rovelli’s beautiful
dialogue[3]. I refrain from further commenting these two religions, because the subject of
this paper is a third one.

1.2. Noncommutativity

We know from quantum mechanics that any measurement uncertainty (enforced by
principles of Nature and not due to lack of experimental skills) goes hand in hand with
noncommutativity. To the best of my knowledge, the possibility that geometry looses its
meaning in quantum physics was first2 considered by Schrödinger[5]. On the other hand,3

Heisenberg suggested to use coordinate uncertainty relations to ameliorate the short-distance
singularities in the quantum theory of fields. His idea (which appeared later[7]) inspired
Peierls in the treatment of electrons in a strong external magnetic field[8]. Via Pauli and
Oppenheimer the idea came to Snyder who was the first to write down uncertainty relations
between coordinates[9].

The uncertainty relations for coordinates were revived by Doplicher et al.[2] as a means
to avoid gravitational collapse when localising events with extreme precision. According
to [2], the coordinate uncertainties�xµ have to satisfy�x0(�x1 + �x2 + �x3) ≥ �2

P and
�x1�x2 + �x2�x3 + �x3�x1 ≥ �2

P, where�P =
√
G�/c3 is the Planck length. These

uncertainty relations are induced by coordinate operators ˆxµ = (x̂µ)∗ under the condition

[[ x̂µ, x̂ν], x̂ρ] = 0, (1)

[x̂µ, x̂ν][ x̂
µ, x̂ν] = 0,

(
1

8
[x̂µ, x̂ν][ x̂ρ, x̂σ ]εµνρσ

)2

= �8
P. (2)

2 Actually, Riemann himself speculated in his famous Habilitationsvortrag[4] about the possibility that the
hypotheses of geometry lose their validity in the infinitesimal small.

3 These historical remarks are extracted from[6].
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Eq.(1) qualifies the resulting algebra as a special Moyal plane, see Section2.1. Moreover,
in [2] first steps are taken towards a perturbative quantum field theory on the resulting
(Minkowskian) quantum space-time.

1.3. Noncommutative geometry

Space-time is more than just a copy of quantum mechanical phase space. It is the arena
for field theory. Thus, apart from only describing the algebra of space-time operators,
we have to realise the geometric world of gauge fields, fermions, differential calculi, Dirac
operators and action functionals associated with this algebra. Fortunately for us, the relevant
mathematical framework –noncommutative geometry– has been developed, foremost by
Connes[10,11]. Related monographs are[12–15].

Noncommutative geometry is the reformulation of geometry in an algebraic and
functional-analytic language, in this way permitting an enormous generalisation. Today,
noncommutative geometry is well-established and indispensable in mathematics. In physics,
the most important achievement of noncommutative geometry is to overcome the distinction
betweencontinuousanddiscretespaces, in the same way as quantum mechanics washed
away the discrepancy between waves and particles.

This achievement is particularly visible in thestandard modelof particle physics. The
standard model was proposed around 1970 as the composition of theelectroweak modelof
Glashow[16], Salam[17] and Weinberg[18], including the (at first sight artificial)Higgs
sector [19–21] to give huge masses to the (at that time conjectured)W- andZ-bosons,
and the independentquantum chromodynamics[22–24]to describe the strong interactions.
The standard model is an experimentally very successful model which has survived many
attempts of “improving” it.

As a matter of fact, the standard model is not only natural but also rather unique[25]
from the point of view of noncommutative geometry: it is a spectral triple[26]. Actually, the
standard model inspired Connes to discover the axioms[27] of spectral triples. In particular,
the language in which spectral triples are formulated is very close to field theory: besides
the algebraA represented on a Hilbert spaceH (which alone are only good for measure
theory), to describemetric spaces with spin structureone also needs a Dirac operatorD,
the chiralityγ5 and the charge conjugationJ. For the proof of Connes’ theorem[27] that
commutative spectral triples are spin manifolds, see[28,15]. All finite spectral triples are
known[29,30].

As already underlined, noncommutative geometry evaporates the distinction between
continuous and discrete spaces. For the standard model, the relevant geometry is that of the
two-sheeted universe[31], i.e. two copies (one for left-handed and one for right-handed
fermions) of the four-dimensional space separated from each other by the de Broglie wave-
length of the Higgs boson. It is a discrete Kaluza–Klein geometry[32] with discrete fibre
consisting of two points. Writing down gauge theory on such a disconnected space, the
component of the gauge field in the discrete direction is a scalar, the Higgs field, and the
corresponding part of the noncommutative Yang–Mills action gives the Higgs potential
responsible for spontaneous symmetry breaking. Moreover, the Yukawa coupling of the
Higgs with the fermions is nothing but the restriction of the minimal coupling of the gauge
fields with the fermions to the discrete direction. I refer to[33,34] for details about the
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noncommutative geometrical construction of the standard model and to[35] for a historical
review.

Eventually, noncommutative geometry achieved via the spectral action principle[36] a
true unification of the standard model with general relativity on the level of classical field
theories. Kinematically, Yang–Mills fields, Higgs fields and gravitons are all regarded as
fluctuationsof the free Dirac operator[27]. The spectral action

S = traceχ

(
z
D2

�2

)
, (3)

(which is the weighted sum of the eigenvalues ofD2 up to the cut-off�2) of the single
fluctuated Dirac operatorD gives the complete bosonic action of the standard model, the
Einstein–Hilbert action (with cosmological constant) and an additional Weyl action term
in one stroke[36]. See also[37]. The parameterz in (3) is the “noncommutative coupling
constant”[38]. Assuming the spectral action(3) to produce the bare action at the (grand
unification) energy scale�, the renormalisation flow based on the one-loopβ-functions
leads to a Higgs mass of 182–201 GeV[38].

Of course, the unification of the standard model with general relativity via the spectral
action is of limited value as long as it is not achieved at the level of quantum field theory.
On the other hand, the arguments of[2] make clear that this will not be possible with almost
commutative geometries (products of commutative geometries with matrices). Space-time
has to be noncommutative itself. The complete problem of a gravitational dynamics of the
noncommutative space-time being too difficult to treat, the first step is to consider field
theory on noncommutative background spaces.

2. Some models for noncommutative space(-time)

2.1. The Moyal plane

The best-studied candidate for noncommutative space-time is the Moyal plane[39,40],
which was identified as a solution of the uncertainty conditions for coordinate operators[2].
The (D-dimensional) Moyal planeRD

θ , also called noncommutativeRD, is characterised
by thenonlocal�-product

(a � b)(x) :=
∫

dDy
dDk

(2π)D
a

(
x+1

2
θ·k
)
b(x+y) eiky, θµν = −θνµ ∈ R. (4)

Here,a, b ∈ S(RD) are (complex-valued) Schwartz class functions of rapid decay. The
entriesθµν in (4) have the dimension of an area. Generalisations of(4) to deformations of
C∗-algebras are considered in[41].

Using the identity
∫

(dDk/(2π)D) eik·(x−y) = δ(x − y) it is not difficult to prove that the
�-product(4) is associative ((a � b) � c)(x) = (a � (b � c))(x) and noncommutative,a � b 
=
b � a. Moreover, complex conjugation is an involution,a � b = b̄ � ā. One has the important
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property∫
dDx(a � b)(x) =

∫
dDx a(x)b(x). (5)

Partial derivatives are derivations,∂µ(a � b) = (∂µa) � b + a � (∂µb). For various proofs
(such as in[42]) one needs the fact that for eachf ∈ RD

θ there existf1, f2 ∈ RD
θ with

f = f1 � f2, see[43].
The Moyal product(4) has its origin in quantum mechanics, in particular in Weyl’s

operator calculus[44]. Wigner introduced the useful concept of the phase space dis-
tribution function [45]. Then, Groenewold[39] and Moyal [40] showed that quantum
mechanics can be formulated on classical phase space using thetwisted productcon-
cept. In particular, Moyal proposed the “sine-Poisson bracket” (nowadays called Moyal
bracket), which is the analogue of the quantum mechanical commutation relations.
The twisted product was extended from Schwartz class functions to (appropriate) tem-
pered distributions by Gracia-Bondı́a and V́arilly [43]. The programme of Groenewold
and Moyal culminated in the axiomatic approach ofdeformation quantisation[46,47].
The problem to lift a given Poisson structure to an associative�-product was solved
by Kontsevich[48]. Cattaneo and Felder[49] found a physical derivation of Kontse-
vich’s formula in terms of a path integral quantisation of a Poisson sigma model[50].
The Moyal plane is a spectral triple[42] and the spectral action has been computed
[51,52].

There is a (unfortunately more popular) different version of the�-product,

(a � b)(x) = exp

(
iθµν

∂

∂yµ

∂

∂zν

)
a(y)b(z)

∣∣∣∣
y=z=x

, (6)

which is obtained by the following steps from(4):

• Taylor expansion ofa(x + (1/2)θ·k) aboutk = 0,
• repeated representation ofkµ eik·y = −i(∂/∂yµ) eik·y,
• integration by parts iny,
• k-integration yielding

∫
(dDk/(2π)D) eik·y = δ(y),

• y-integration.

Of course, as the Taylor expansion is involved, at least one of the functionsa, b has to
be analytic. Actually, the formula(6) is an asymptotic expansionof the �-product (4)
which becomes exact under the conditions given in[53]. I would like to stress that the
most important property concerning physics is thenonlocalityof the�-product(4), not its
noncommutativity. To the value ofa � b at the pointx there contribute individual values
of the functionsa, b far away fromx. This nonlocality is hidden in(6): at first sight it
seems to be local, as only the derivatives ofa, b atx contribute to (a � b)(x). However, the
point is that analyticity is required, where the information about a function is not localised
at all.

A third version of the�-product which is particularly useful for field theory in mo-
mentum space is obtained by expressing on the rhs of(4) the functions by their Fourier
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transformation.4 This yields

(a � b)(x) =
∫

dDp

(2π)D
e−ipx

∫
dDq

(2π)D
e−(i/2)θµνpµqν â(p−q)b̂(q). (7)

Being a noncompact space, the algebraRD
θ cannot have a unit. For various reasons, the

restriction of the�-product to Schwartz class functions should be relaxed. That extension
to tempered distribution was performed in[43]. A good summary is the appendix of[54].
Since(4) is smooth, forT being a tempered distribution andf, g ∈ S(RD) one defines the
productT � f via

〈T � f, g〉 := 〈T, f � g〉, (8)

and similarly forf � T . BothT � f andf � T are smooth functions[43], but not necessarily
of Schwartz class. The set of thoseT for which T � f is of Schwartz class is the left
multiplier algebraML(RD

θ ), and similarly forMR(RD
θ ) (which is different). Then, theMoyal

algebra is defined asM(RD
θ ) := ML(RD

θ ) ∩ MR(RD
θ ). It is a unital algebra (in fact the

largest compactification ofRD
θ ) and contains also the coordinate functionsxµ and the

“plane waves” eipµx
µ
. In fact, the famous commutation relation [xµ, xν] = iθµν holds in

M(RD
θ ) and not inRD

θ . The Moyal algebra is huge so that for practical purposes appropriate
subalgebras must be considered[43,42]. There are several surprises onM(RD

θ ): for instance,
the Diracδ-distribution belongs toM(RD

θ ), with δ � δ = (2D/det θ)1. On the other hand,

e(2i/a)x1x2 ∈ M(R2
θ) iff |a| 
= θ1,θ1 := θ12 = −θ21. This proves, by the way, that for different

θ the Moyal algebrasM(RD
θ ) are different.

Traditionally, physicists expand the algebraRD
θ into the Weyl basis (plane waves) eipµxµ ,

which has the advantage that the resulting computations are similar to the usual treatment of
commutative field theories in momentum space. For both mathematical investigations (see
e.g.[43,42]) and our recent renormalisability proof[55] it is, however, much more conve-
nient to use the harmonic oscillator basis given by the eigentransitions of the Hamiltonian
H = (1/2)xµxµ. In D = 2 dimensions one has[56,43]

H � fmn = θ1

(
m + 1

2

)
fmn, fmn � H = θ1

(
n + 1

2

)
fmn, (9)

fmn(x) = 2√
n!m!θm+n

1

ā�m � e−(2H/θ1) � a�n, (10)

wherea = (1/
√

2)(x1 + ix2) andā = (1/
√

2)(x1 − ix2).
The eigentransitionsfmn have the remarkable property that

(fmn � fkl)(x) = δnkfml(x),
∫

d2xfmn = (2π)
√

det θδmn. (11)

Thus, thefmn behave like infinite standard matrices with entry 1 at the intersection of the
(m + 1)th row with the (n + 1)th column, and with entry 0 everywhere else. In fact, the

4 I use the convention thatf (x) =
∫

(dDp/(2π)D) e−ipxf̂ (p) andf̂ (p) =
∫

dDx eipxf (x).
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decomposition

R2
θ � a(x) =

∞∑
m,n=0

amnfmn(x) (12)

defines a Fŕechet algebra isomorphism betweenR2
θ and the matrix algebra of rapidly de-

creasing double sequences{amn} for which

rk(a) :=

 ∞∑

m,n=0

θ2k
1

(
m + 1

2

)k (
n + 1

2

)k

|amn|2



1/2

(13)

is finite for allk ∈ N, see[43].
Both thefmn(x) and their Fourier transformation are given by Laguerre polynomials in

radial direction and Fourier modes in angular direction. On one hand, this makes clear that
thefmn form a basis of the two-dimensional Moyal plane. On the other hand, restricting
the matrix base to finite matricesfmn, n,m ≤ N, corresponds to a cut-off both in position
space and momentum space.

Further, we note that thefmn are also the common eigenfunctions of the Landau Hamil-
tonian

H±
L = 1

2
(i∂µ ± Aµ)(i∂µ ± Aµ), Aµ = 1

2
Bµνx

ν. (14)

If Bµν = 4(θ−1)µν, and thusB := 4/θ1, one has

H+
L fmn = B

(
m + 1

2

)
fmn, H−

L fmn = B

(
n + 1

2

)
fmn. (15)

Thus, the harmonic oscillator basis has the additional merit of diagonalising the Landau
Hamiltonian. This observation was the starting point of various exact solutions of quantum
field theories on noncommutative phase space[57–59].

For more information about the noncommutativeRD I refer to[43,60,42].

2.2. The noncommutative torus

The Moyal plane is closely related to the noncommutative torus, which is the best-studied
noncommutative space[61,62]. A basis for the algebraTD

θ of the noncommutativeD-torus
is given by unitaritiesUp labelled byp = {pµ} ∈ ZD, withUp(Up)∗ = (Up)∗Up = 1. The
multiplication is defined by

UpUq = eiπθµνpµqνUp+q, µ, ν = 1, . . . , D, θµν = −θνµ ∈ R. (16)

Elementsa ∈ Td
θ have the following form:

a =
∑
p∈Zd

apU
p, ap ∈ C, ‖p‖n|ap| → 0 for ‖p‖ → ∞. (17)

If θµν /∈ Q (irrational case) one can define partial derivatives

∂µU
p := −ipµU

p, (18)
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which satisfy the Leibniz rule and Stokes’ law with respect to the integral∫
a = a0, (19)

wherea is given by(17).
An excellent presentation of the noncommutative torus was given by Rieffel[63].
Other interesting noncommutative spectral triples are the Connes–Landi spheres[64]

and the (mostly spherical) examples found by Connes and Dubois-Violette[65].

2.3. Fuzzy spaces

The fuzzy sphere[66] is one of the simplest noncommutative spaces. It is obtained by
truncating the representations ofsu(2). The algebraS2

N is identified with the mappings from
the representation spaceN/2 of su(2) to itself, thus with the algebraMN+1(C). The fuzzy
sphereS2

N is generated bŷXi, i = 1,2,3, which form ansu(2)-Lie algebra with suitable
rescaling, identified by the requirement that the Casimir operator still fulfils the defining
relation of the two-sphere as an operator:

[X̂i, X̂j] =
3∑

k=1

iλNεijkX̂k,

3∑
i=1

X̂iX̂i = R2,
R

λN
=
√

N

2

(
N

2
+ 1

)
. (20)

One has to give a precise description of the embeddings of these algebras for different
N. Then, for fixed radiusR, one recovers the commutative algebra of the ordinary sphere,
λ = 0, in the limitN → ∞ [67].

The Lie algebrasu(2) generated byJi, i = 1,2,3, acts ona ∈ S2
N by the adjoint action

Jia = 1

λ
[X̂i, a]. (21)

Thus, an elementa ∈ S2
N can be represented bya =∑N

l=0
∑l

m=−l alm9lm, where

3∑
i=1

J2
i 9lm = l(l+1)9lm, J39lm = m9lm,

4π

N+1
tr(9lm9l′m′ ) = δll′δmm′ .

(22)

For comments on field theoretical models, see Section4. Other fuzzy spaces include the
fuzzyCP2 [68,69]and theq-deformed fuzzy sphere[70,71].

3. Classical field theory on noncommutative spaces

Since classical field theories can be geometrically described, it is not difficult to write
down classical action functionals on noncommutative spaces. The first example of this
type was Yang–Mills theory on the noncommutative torus[72]. Another example is the
noncommutative geometrical description of the standard model recalled briefly in Section
1.3.
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3.1. Field theory on the noncommutative torus

The noncommutative torus became popular to field theorists when Connes et al. pro-
posed to compactifyM -theory on such a space[73].M -theory lives in higher dimensions
so that some of them must be compactified to give a realistic model. Compactifying on
a noncommutative instead of a commutative torus amounts to turn on a constant back-
ground 3-formC. An alternative interpretation based on D-branes on tori in presence of a
Neveu–SchwarzB-field was given by Douglas and Hull[74]. Similar effects are obtained in
boundary conformal field theory[75]. There are also other noncommutative spaces which
arise as limiting cases of string theory[76].

Later, the appearance of noncommutative field theory in the zero-slope limit of type II
string theory was thoroughly investigated by Seiberg and Witten[77]. Moreover, using the
results of[78] about instantons on noncommutativeR4, Seiberg and Witten argued that there
is an equivalence between the Yang–Mills theories on standardR4 and noncommutative
R4, which I comment on in Section5.4.

It should be mentioned that matrix theories were studied long beforeM -theory was
proposed, and that these matrix theories did contain certain noncommutative features. In
the large-N limit of two-dimensionalSU(N) lattice gauge theory, the number of degrees of
freedom is reduced and corresponds to a zero-dimensional model[79], under the condition
that no spontaneous breakdown of the [U(1)]4-symmetry appears. As shown in[80], a
spontaneous symmetry breakdown does not appear when twisted boundary conditions[81]
are used. In[82], the construction of the twisted Eguchi–Kawai model was extended to
any even dimension. Here, the action can be rewritten in terms of noncommuting matrix
derivatives [;(j), ·], with [;(2j), ;(2j+1)] = −2πi/N.

3.2. Classical action functionals on the Moyal plane

Here, I list for the example of the Moyal plane a few important action functionals for
noncommutative field theories. In principle, these action functionals are related to connec-
tions on projective modules. To simplify the presentation, I restrict myself to trivial modules
given by the algebraRD

θ itself.
The most natural action from the point of view of noncommutative geometry isU(N)

Yang–Mills theory in four dimensions:

SYM [A] =
∫

d4x trMN (C)

(
1

4g2Fµν � F
µν

)
, (23)

Fµν = ∂µAν − ∂νAµ − i(Aµ � Aν − Aν � Aµ), (24)

whereAµ = A∗
µ ∈ R4

θ ⊗ MN (C). This action arises from the Connes–Lott action functional
[83] and the spectral action principle[51,52]as well as in the zero-slope limit of string theory
[77]. For quantum field theory it has to be extended – as usual – by the ghost sector:

Sgf =
∫

d4x trMN (C)

(
s
{
c̄ � ∂µA

µ + α

2
c̄ � B + ρµ � Aµ + σ � c

})
, (25)
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whereα is the gauge parameter. The components of ¯c, c, ρµ are anticommuting fields and
the graded BRST differentials [84] (which commutes with∂µ) is defined by

sAµ = ∂µc − i(Aµ � c − c � Aµ), sc = ic � c,

sc̄ = B, sB = sρµ = sσ = 0. (26)

The external fieldsρµ andσ are the Batalin–Vilkovisky antifields[85] relative toAµ and
c, respectively.

There is always a reference frame in which the noncommutativity matrixθ takes the
standard form where the only nonvanishing components areθ2i−1,2i = −θ2i,2i−1 ≡ θi,
i = 1, . . . , D/2. Each of the two-dimensional blocks is invariant under two-dimensional
rotations. This means that action functionals which involve the�-product like (23)
are invariant under the subgroup (SO(2))D/2 of the D-dimensional rotation group
SO(D).

The Yang–Mills action(23)suggests that action functionals for field theories onRD
θ are

simply obtained by replacing the ordinary (commutative) product of functions on Euclidean
space by the�-product(4). This procedure leads to the following action for noncommutative
φ4-theory:

S[φ] :=
∫

dDx

(
1

2
∂µφ � ∂µφ + 1

2
µ2φ � φ + λ

4!
φ � φ � φ � φ

)
(x). (27)

It must be stressed, however, that this is a formal procedure and that – in contrast to the Yang–
Mills action(23)– the scalar field action(27)does not directly follow from noncommutative
geometry or the scaling limit of string theory[77]. In fact, we have proven in[55] that it
has to be extended by an harmonic oscillator term.

It was pointed out by Langmann and Szabo[86] that the�-product interaction is (up
to rescaling) invariant under a duality transformation between positions and momenta.
Indeed, using a modified Fourier transformationφ̂(pa) = ∫ d4x e(−1)a ipa,µx

µ
a φ(xa), where

the subscripta refers to the cyclic order in the�-product, one obtains from the definitions
(4) and (7)and the realityφ(x) = φ(x) the representation

Sint[φ; λ] =
∫

d4x
λ

4!
(φ � φ � φ � φ)(x)

=
∫ ( 4∏

a=1

d4xa

)
φ(x1)φ(x2)φ(x3)φ(x4)V (x1, x2, x3, x4) (28a)

Sint[φ; λ] =
∫

d4x
λ

4!
(φ � φ � φ � φ)(x)

=
∫ ( 4∏

a=1

d4pa

(2π)4

)
φ̂(p1)φ̂(p2)φ̂(p3)φ̂(p4)V̂ (p1, p2, p3, p4), (28b)
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with

V̂ (p1, p2, p3, p4) = λ

4!
(2π)4δ4(p1−p2+p3−p4)

× cos

(
1

2
θµν(p1,µp2,ν+p3,µp4,ν)

)
, (29a)

V (x1, x2, x3, x4) = λ

4!

1

π4 det θ
δ4(x1−x2+x3−x4) cos(2(θ−1)µν(x

µ
1 x

ν
2+x

µ
3 x

ν
4)).

(29b)

Thus, the replacements

φ̂(p) ↔ π2
√

| det θ|φ(x), pµ ↔ x̃µ := 2(θ−1)µνx
ν, (30)

exchange the a,b-versions of(28) and (29).
On the other hand, the usual free scalar field action given byλ = 0 in (27)is not invariant

under that duality transformation. In order to achieve this we have to extend the free scalar
field action by a harmonic oscillator potential:

Sfree[φ;µ,@0] =
∫

d4x

(
1

2
(∂µφ) � (∂µφ) + @2

2
(x̃µφ) � (x̃µφ) + µ2

2
φ � φ

)
(x).

(31)

Of course, the oscillator potential breaks translation invariance. For complex scalar fieldsϕ

of electric charge@, another possibility is given by a constant external magnetic fieldBµν =
4(θ−1)µν via the covariant derivativeDµϕ := ∂µϕ + i@Aµϕ, with Aµ = (1/2)Bµνx

ν:

SBfree[ϕ;µ,@] =
∫

d4x

(
1

2
(Dµϕ)∗ � (Dµϕ) + µ2

2
ϕ∗ � ϕ

)
(x). (32)

Adding the interaction termSint[ϕ; λ] = (λ/4!)
∫

d4xϕ � ϕ∗ � ϕ � ϕ∗, the quantum field the-
ory associated with the magnetic field action(32)was analysed and for@ = 1 exactly solved
in [58,59]. Note that

Sfree[φ1;µ,@] + Sfree[φ2;µ,@]

= 1

2
SBfree[φ1+iφ2;µ,@] + 1

2
SBfree[φ1+iφ2;µ,−@]. (33)

The interaction mixesφ1, φ2, though.
Now, under the transformation(30)one has for the total actionS = Sfree + Sint

S[φ;µ, λ,@] �→ @2S

[
φ;

µ

@
,
λ

@2 ,
1

@

]
, (34)

and accordingly forSBfree[ϕ,@] + Sint[ϕ, λ]. In the special case@ = 1 the action
S[φ;µ, λ,1] is invariant under the duality(30) and can be written as a standard matrix
model.
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4. Regularisation

The philosophy that space-time noncommutativity regularises quantum field theories
was made explicit in fuzzy noncommutative spaces[66,12]. The partition function relative
to the scalar field action on the fuzzy sphere,

Z[j] =
∫
D[φ] e−S[φ]−(4π/(N+1)) tr(jφ),

S[φ] = 4π

N+1
tr

(
1

2

3∑
i=1

φJ2
i φ + V [φ]

)
, φ ∈ S2

N, (35)

whereV [φ] is some polynomial inφ, leads to an automatic UV-regularisation[87,88,68]
of the resulting Feynman graphs. See also[89].

Of course, the standard divergences of theφ4-model on the commutative sphereS2 will
reappear in the limitN → ∞. This limit was investigated in[90]. For the one-loop self-
energy in theφ4-model, a finite but nonlocal difference between theN → ∞ limit of the
fuzzy sphere and the ordinary sphere was found. See[91] for similar calculations.

The construction of gauge models on the fuzzy sphere is less obvious. See e.g.[92,93].
I would also like to mention another construction of finite quantum field theories on

noncommutative spaces which is based on point-splitting via tensor products[94,95].

5. Renormalisation

It is not difficult to write down classical action functionals on noncommutative spaces (see
Section3), but it is not clear that quantum field theories[96–98]can be defined consistently.5

As locality is so important in quantum field theory[99], it is perfectly possible that quantum
field theories are implicitly built upon the assumption that the action functional has to live
on a (commutative) manifold.

First results on noncommutative quantum field theories (with an infinite number of de-
grees of freedom) are due to Filk[100] who showed that the planar graphs of a field theory
on the Moyal plane6 are identical to the commutative theory (and thus have the same di-
vergences). An achievement in[100] which turned out to be important for later work was
the definition of theintersection matrixof a graph which is read-off from its reduction to a
rosette. In[101] the persistence of divergences was rephrased in the framework of noncom-
mutative geometry, based on the general definition of a dimension and the noncommutative
formulation of external field quantisation. See also[102].

Knowing that divergences persist in quantum field theories on the Moyal plane, the
question arises whether these models are renormalisable. It was, therefore, an important
step to prove that Yang–Mills theory is one-loop renormalisable on the Moyal plane and

5 This refers to infinite-dimensional quantum field theories. There is no problem with finite-dimensional exam-
ples[87,88].

6 Filk’s model refers to[2] but is formulated in the�-product formalism. It is certainly inspired by the twisted
Eguchi–Kawai model[80,82]discussed in Section3.1.
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on the noncommutative torus[103–105]. This means that these models are divergent[100],
but the one-loop divergences are absorbable in a multiplicative renormalisation of the initial
action such that the Ward identities are fulfilled.

In this line of success, it was somewhat surprising when Minwalla et al.[106] pointed
out that there is a new type of infrared-like divergences which makes the renormalisation
of scalar field theories on the Moyal plane very unlikely. Non-planar graphs are regulated
by the phase factors in the�-product(7), but only if the external momenta of the graph are
nonexceptional. Inserting nonplanar graphs (declared as regular) as subgraphs into bigger
graphs, external momenta of the subgraph are internal momenta for the total graph. As
such, exceptional external momenta for the subgraph are realised in the loop integration,
resulting in an divergent integral for the total graph. This is the so-calledUV/IR-mixing
problem[106].

5.1. Quantum field theory on the noncommutative torus

The paper[73] inspired many activities on the interface between string/M -theory and
noncommutative geometry (I come back to that in Section5.2). Among others the ques-
tion was raised whether Yang–Mills theory on the noncommutative torus is renormal-
isable. See also[107]. We have confirmed one-loop renormalisability in[105]: using
ζ-function techniques and cocycle identities we have extracted the pole parts related
to the Feynman graphs and proved that they can be removed by multiplicative renor-
malisation of the initial action. In particular, the Ward identities are satisfied. See also
[108].

Based on ideas developed in[109] on type IIB matrix models, it was shown in[110]
that, imposing a natural constraint for the (finite) matrices, the twisted Eguchi–Kawai con-
struction[80] can be generalised to noncommutative Yang–Mills theory on a toroidal lat-
tice. The appearing gauge-invariant operators are the analogues of Wilson loops[111].
This formulation enabled numerical simulations[112,113] of the various limiting pro-
cedures which confirmed conjectures[114] about striped and disordered patterns in the
phase diagram of spontaneously broken noncommutativeφ4-theory. On the other hand,
the limit N → ∞ of the matrix size is mathematically delicate[115]. To deal with that
problem, a new formulation[116,117]of matrix models approximating field theories on
the noncommutative torus has been proposed which is based on noncommutative solitons
[118].

An important development is the exact (nonperturbative) solution of Yang–Mills theory
on the two-dimensional noncommutative torus[119,120]. This solution is in the same spirit
as the original Connes–Rieffel analysis[61,62], but expands it to completely solve the
quantum theory.

5.2. Quantum field theories on the Moyal plane

With the motivation of the Moyal plane in[2], the proof that UV-divergences in quantum
field theories persist[100], and the relationship of the noncommutative torus toM -theory
[73] and the noncommutativeRD to type II string theory[74,78], time was ready in 1998 to
investigate the renormalisation of quantum field theories on the noncommutative torus and
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the noncommutativeRD. It is, therefore, not surprising that this question was addressed by
different groups at about the same time[103–105].

Mart́ın and Śanchez-Ruiz[103] investigatedU(1) Yang–Mills theory on the noncom-
mutativeR4 at the one-loop level. They found that all one-loop pole terms of this model
in dimensional regularisation7 can be removed by multiplicative renormalisation (minimal
subtraction) in a way preserving the BRST symmetry. This is completely analogous to the
situation on the noncommutative 4-torus[105]. Shortly later there appeared also an inves-
tigation of (2+ 1)-dimensional super-Yang–Mills theory with the two-dimensional space
being the noncommutative torus[104].

The paper[77] of Seiberg and Witten from August 1999 made the interface between
string theory and noncommutative geometry extremely popular. Thousands of papers on
this subject appeared, making it impossible to give an adequate overview. I restrict myself
to the renormalisation question and refer to the following reviews for further information:

• by Konechny and Schwarz with focus on compactifications ofM -theory on noncommu-
tative tori[121] as well as on instantons and solitons on noncommutativeRD [122],

• by Douglas and Nekrasov[123] and by Szabo[124], both with focus on field theory on
noncommutative spaces in relation to string theory,

• by Aref’eva et al.[125] with focus on string field theory.

A systematic analysis of field theories on noncommutativeRD, to any loop order,
was first performed by Chepelev and Roiban[126]. The essential technique is the rep-
resentation of Feynman graphs as ribbon graphs[127] (for noncommutative field the-
ories first suggested in[91]), drawn on an (oriented) Riemann surface with boundary,
to which the external legs of the graph are attached. Using sophisticated mathemati-
cal tools (which I review in Section5.3), Chepelev and Roiban were able to relate the
power-counting behaviour to the topology of the graph. Their first conclusion was that a
noncommutative field theory is renormalisable iff its commutative counterpart is renor-
malisable. Then, by computing the nonplanar one-loop graphs explicitly, Minwalla, Van
Raamsdonk and Seiberg pointed out a serious problem in the renormalisation ofφ4-
theory on noncommutativeR4 andφ3-theory on noncommutativeR6 [106]. It turned out
that this problem was simply overlooked in the first version of[126], with the power-
counting analysis being correct. A refined proof of the power-counting theorem was given
in [128].

Anyway, the problem discovered in[106] made the subject of noncommutative field
theories extremely popular. In the following months, an enormous number of articles doing
(mostly) one-loop computations of all kind of models appeared. I do not want to give an
overview about these activities and mention only a few papers: the two-loop calculation
of φ4-theory[129]; the renormalisation of complexφ � φ∗ � φ � φ∗ theory[130], later ex-
plained by a topological analysis[128]; computations in noncommutative QED[131]; the
calculation of noncommutativeU(1) Yang–Mills theory[132], with an outlook to super-
Yang–Mills theory; the one-loop analysis of noncommutativeU(N) Yang–Mills theory
[133].

7 There is of course a problem extendingθ to complex dimensions, this is however discussed in[103].
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5.3. The power-counting analysis of Chepelev and Roiban

The previously mentioned one-loop calculations are superseded by the power-counting
theorem of Chepelev and Roiban[128] which decides the renormalisability question of
(massive, Euclidean) quantum field theories on the Moyal plane to all orders. Roughly
speaking, quantum field theories with only logarithmic divergences are renormalisable8 on
the Moyal plane. Still, the 1PI Green’s functions do not exist pointwise (at exceptional
momenta) so that multiplication with IR-smoothening test functions is necessary. Apart
from some exceptional cases such as theφ � φ∗ � φ � φ∗ interaction, models with quadratic
divergences are not perturbatively renormalisable.

As I have the impression that the work of Chepelev and Roiban is not sufficiently known, I
would like to review the main steps for the example of the noncommutativeφ4-model arising
from the action(27). As usual, the Euclidean quantum field theory is (formally) defined via
the partition function,

Z[J ] :=
∫
D[φ] e−S[φ]−

∫
dDxJ(x)φ(x)

. (36)

We suppose here that the fields are expanded in the Weyl basisφ(x) =∫
(dDp/(2π)D)φ(p) eipx, whereφ(p) are commuting amplitudes of rapid decay in‖p‖

and eipx is the base of an appropriate subalgebra of the Moyal algebraM(RD
θ ). Then, the

“measure” of the functional integration is formally defined asD[φ] =∏p∈RD dφ(p).
As usual, the integral(36) is solved perturbatively about the solution of the free theory

given byλ = 0. The solution is conveniently organised byFeynman graphsbuilt according
to Feynman rules out of propagators and vertices. For the noncommutative scalar field action
(27), the representation(7) leads to the following rules:

• Due to(5), the propagator is unchanged compared with commutativeφ4-theory, but for
later purpose written in double line notation:

(37)

• The vertices receive phase factors[100] which depend on the cyclic order of the legs:

(38)

There is momentum conservationp1 + p2 + p3 + p4 = 0 at each vertex (due to trans-
lation invariance of(27)).

The double line notation reflects the fact that the vertex(38) is invariant only under cyclic
permutations of the legs (using momentum conservation). The resulting Feynman graphs
are ribbon graphs[91,126] which depend crucially on how the valences of the vertices
are connected. Forplanar graphsthe total phase factor of the integrand is independent
of internal momenta, whereasnonplanar graphshave a total phase factor which involves

8 The reason is that logarithms are integrable, see[134] for an explicit construction of the estimations.
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internal momenta. Planar graphs are integrated as usual and give (up to symmetry factors)
the same divergences as commutativeφ4-theory[100]. One would remove these divergences
as usual by appropriate normalisation conditions for physical correlation functions. Non-
planar graphs require a separate treatment.

There is a closed formula for the integral associated to a noncommutative Feynman
graph in terms of the intersection matricesI, J,K (which encode the phase factors) and the
incidence matrixE. We give an orientation to each inner linel and letkl be the momentum
flowing through the linel. For each vertexv we define9

Evl =




1 if l leaves fromv,

−1 if l arrives atv,

0 if l is not attached tov.

(39)

We letPv be the total external momentum flowing into the vertexv. Restricting ourselves
to four dimensions, an 1PI (one-particle irreducible) Feynman graphG with I internal lines
andV vertices gives rise to the integral

IG(P) =
∫ I∏

l=1

d4kl

k2
l + m2

V∏
v=1

(2π)4δ

(
Pv −

l∑
l=1

Evlkl

)

× exp iθµν


 I∑

m,n=1

Imnkµmk
ν
n +

I∑
m=1

V∑
v=1

JmvkµmP
ν
v +

V∑
v,w=1

KvwPµ
v P

ν
w


 .

(40)

One can show thatImn, Jmv,Kvw ∈ {1,−1,0} after use of momentum conservation[100].
Next, one introduces Schwinger parameters 1/(k2 + m2) = ∫∞

0 dαe−α(k2+m2) and the
identity (2π)4δ(qv) = ∫ d4yv eiyvqv for each vertex in(40), then completes the squares in
k and performs the Gaußiank-integrations.10 Writing yv̄ = yV + zv̄ for v̄ = 1, . . . , V−1
one has

∑V
v=1 yvEvl =∑V−1

v̄=1 zv̄Ē
v̄l. TheyV -integration yields the overall momentum con-

servation. It remains to complete the squares forzv̄ and finally to evaluate the Gaußian
zv-integrations. The result is[126]

IG(P) = (2π)4δ

(
V∑

v=1

Pv

)
1

16Iπ2L exp


iθµν

V∑
v,w=1

KvwPµ
v P

ν
w




×
∫ ∞

0

I∏
l=1

dαl
e−
∑I

l=1
αlm

2

√
detA detB

exp

(
−1

4
(JP̃)TA−1(JP̃)

+ 1

4
(ĒA−1(JP̃) + 2iP ′)TB−1(ĒA−1(JP̃) + 2iP ′)

)
, (41)

9 We assume that tadpoles (a line starting and ending at the same vertex) are absent. In the final formula they
can be taken into account[128].
10 This means that the order of integrations is exchanged in an integral which is in general not absolutely

convergent. Thus, the result(41) is based on a certain limiting procedure, which is not necessarily unique. That
leaves the possibility of circumventing the UV/IR-problems arising from(41)by different limiting procedures.
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where

Amn
µν := αmδ

mnδµν − iImnθµν, (JP̃)mµ :=
V∑

v=1

JmvθµνP
ν
v ,

Ē
v̄l := Ev̄l for v̄ = 1, . . . , V−1, P ′v̄

µ := P
µ
v̄ for v̄ = 1, . . . , V−1,

Bv̄w̄µν :=
I∑

m,n=1

Ē
v̄m(A−1)µνmnĒ

w̄n
. (42)

The formula(41)is referred to as the parametric integral representation of a noncommutative
Feynman graph. See also[106]. Actually, [128] treats a more general case where also
derivative couplings are admitted.

Possible divergences of(41)show up in theαi → 0 behaviour.11 In order to analyse them
one reparametrises the integration domain in(41), similar to the usual procedure described
in [98]. For each Hepp sector[136]

απ1 ≤ απ2 ≤ · · · ≤ απI related to a permutationπ of 1, . . . , I (43)

one definesαπi =∏I
j=i β

2
j , with 0 ≤ βI < ∞ and 0≤ βj ≤ 1 for j 
= I. The leading con-

tribution for smallβj has a topological interpretation.
A ribbon graph can be drawn on a genus-gRiemann surface with possibly several holes to

which the external legs are attached[126,128]. I will say more on ribbon graphs on Riemann
surfaces in Section6.2. I will explain, in particular, how a ribbon graphG defines a Riemann
surface. On such a Riemann surface one considerscycles, i.e. equivalence classes of closed
paths which cannot be contracted to a point. According to homological algebra[137],
one actually factorises with respect to commutants, i.e. one considers the pathaba−1b−1

involving two cyclesa, b as trivial. We letcG(Gi) be the number of nontrivial cycles of the
ribbon graphG wrapped by the subgraphGi. Next, there may exist external linesm, n such
that the graph obtained by connectingm, n has to be drawn on a Riemann surface of genus
gmn > g. If this happens one declares an indexj(G) = 1, otherwisej(G) = 0. The index
extends to subgraphs by definingjG(Gi) = 1 if there are external linesm, n of G which are
already attached toGi so that the line connectingm, n wraps a cycle of the additional genus
g → gmn of G.

Now we can formulate the relation between the parametric integral representation and
the topology of the ribbon graph. Each sector(43) of theα-parameters defines a sequence
of (possibly disconnected) subgraphsG1 ⊂ G2 ⊂ · · · ⊂ GI = G, whereGi is made of the
i double-linesπ1, . . . , πi and the vertices to which these lines are attached. IfGi forms
Li loops it has a power-counting degree of divergenceωi = 4Li − 2i. Using sophisticated
mathematical techniques on determinants (e.g. Cauchy–Binet theorem and Jacobi ratio
theorem), Chepelev and Roiban have derived in[128] the following leading contribution to

11 The mass term regularises theα → ∞ behaviour of(41). It should be possible to proceed accordingly for
massless models using Lowenstein’s trick of auxiliary masses[135].
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the integral:

IG(P) = (2π)4δ

(
V∑

v=1

Pv

)
1

8Iπ2L(det θ)g
exp


iθµν

V∑
v,w=1

KvwPµ
v P

ν
w




×
∑

Hepp sectors

∫ ∞

0

dβI e−β2
I
m2

β
1+ωI−4cG(G)
I

∫ 1

0

(
I−1∏
i=1

dβi

β
1+ωi−4cG(Gi)
i

)

× exp

(
−fπ(P)

I∏
i=1

1

β2jG(Gi)

)
(1 +O(β2)), (44)

wherefπ(P) ≥ 0, with equality forexceptional momenta. In order to obtain a finite integral
IG, one obviously needs

(1) ωi − 4cG(Gi) < 0 for all i if j(G) = 0 orj(G) = 1 but the external momenta are excep-
tional, or

(2) ωi − 4cG(Gi) < 0 or jG(Gi) = 1 for all i if j(G) = 1 and the external momenta are
nonexceptional.

There are two types of divergences where these conditions are violated.
First let the nonplanarity be due to internal lines only,j(G) = 0. Since the total graphG is

nonplanar, one hascG(G) > 0 and therefore no superficial divergence. However, there might
exist subgraphsGi related to a Hepp sector of integration(43)whereωi − 4cG(Gi) ≥ 0. Such
a situation requiresdisconnected12 loops wrapping the same handle of the Riemann surface.
In this case the integral(41) does not exist unless one introduces a regulator. The problem
is that such a subdivergence may appear in graphs with an arbitrary number of external
lines. In the commutative theory this also happens, but there one renormalises already the
subdivergence. This procedure is based on normalisation conditions, which can only be
imposed forlocal divergences. Since a nonplanar graph wrapping a handle of a Riemann
surface is clearly a nonlocal object (it cannot be reduced to a point, i.e. a counterterm vertex),
it is not possible in the noncommutative case to remove that subdivergence. We are thus
forced to use normalisation conditions for the total graph, but as the problem is independent
of the number of external legs of the total graph, we finally need an infinite number of
normalisation conditions. Hence, the model is not renormalisable in the standard way. This
is the UV/IR-mixing problem.

The proposal to treat the UV/IR-mixing problem is a reordering of the perturbation
series[106]. More details of this idea are given in[128]. The procedure is promising, but

12 I have the impression that the problem with disconnected graphs as discovered by Chepelev and Roiban is
completely ignored in the recent literature. Therefore, I have to underline that in renormalisation schemes for
noncommutative quantum field theories which are based on the forest formula, it is not possible to restrict oneself
to connected graphs. The reason is that, in contrast to the commutative situation, disconnected subgraphs can be
coupled in the noncommutative case via the topology of the Riemann surface defined by the total graph.
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a renormalisation proof based on the resummation of nonplanar graphs is still missing.13

Clearly, the problem is absent in theories with only logarithmic divergences.
The second class of problems is found in graphs where the nonplanarity is at least partly

due to the external legs,j(G) = 1. This means that there is no way to remove possible
divergences in these graphs by normalisation conditions. Fortunately, these graphs are su-
perficially finite as long as the external momenta are nonexceptional. Subdivergences are
supposed to be treated by a resummation. However, since the nonexceptional external mo-
menta can become arbitrarily close to exceptional ones, these graphs are unbounded: for
everyδ > 0 one finds nonexceptional momenta{pn} such that|〈φ(p1) · · ·φ(pn)〉| > 1/δ.
This problem also arises in models with only logarithmic divergences.

5.4. θ-Expanded field theories

The only way to circumvent the power-counting theorem of[128] is a different lim-
iting procedure of the loop calculations. Namely, in intermediate steps one changes
the order of integrations of integrals which are not absolutely convergent. One possi-
bility is the use[138] of the Seiberg–Witten map[77] which, however, does not help
[139].

In their famous paper on type II string theory in presence of a Neveu–SchwarzB-field
[77], Seiberg and Witten noticed that passing to the zero-slope limit in two different regular-
isation schemes (point-splitting and Pauli–Villars) gives rise to a Yang–Mills theory either
on noncommutative or on commutativeRD. Since the regularisation scheme cannot matter,
Seiberg and Witten argued that both theories must be gauge-equivalent. More general, un-
der an infinitesimal transformation ofθ, which can be related to deformation quantisation
as in[77] or simply to a coordinate rotation[140], one has to require that gauge-invariant
quantities remain gauge-invariant. This requirement leads to the Seiberg–Witten differential
equation

dAµ

dθρσ
= −1

8
{Aρ, ∂σAµ + Fσµ}� + 1

8
{Aσ, ∂ρAµ + Fρµ}�, (45)

where{a, b}� = a � b + b � a.
The differential equation(45)is usually solved by integrating it from an initial condition

A(0) at θ = 0 in the spirit of deformation quantisation[46,47]. Then,A becomes a formal
power series inθ and the initial conditionA(0). The solution depends on the path of integra-
tion, but the difference between paths is a field redefinition[141]. The solution to all orders
in θ and lowest order inA(0) was given in[142]. A generating functional for the complete
solution of(45) was derived in[143]. The Seiberg–Witten approach was made popular in
[144] where it was argued that this is the only way to obtain a finite number of degrees of
freedom in non-Abelian noncommutative Yang–Mills theory.

Inserting the solution of the Seiberg–Witten differential equation(45) into the noncom-
mutative Yang–Mills action

∫
dDxFµνF

µν leads to the so-calledθ-expanded field theories.

13 I conjecture that the result of such a reordering and resummation procedure would be equivalent to the duality-
covariantφ4-action(31)+ (28), but I cannot prove this idea.
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It must be stressed, however, that unless a complete solution to all orders inθ andA(0)

is known (which is not the case), theθ-expansion of the noncommutative Yang–Mills ac-
tion describes alocal field theory. As such,θ-expanded field theories loose the interesting
features of the original field theory on the Moyal plane.

The quantum field theoretical treatment ofθ-expanded field theories was initiated in
[138]. We have shown that the one-loop divergences to theθ-expanded Maxwell action in
second order inθ are gauge-invariant, independent of a linear or a nonlinear gauge fixing and
independent of the gauge parameter. There is no UV/IR-problem in that approach. We have
shown in[145] that these one-loop divergences can be removed by a field redefinition related
to the freedom in the Seiberg–Witten map. In fact, the superficial divergences in the photon
self-energy are field redefinitions to all orders inθ and any loop order[145]. However, I
have shown in[139] thatθ-expanded field theories are not renormalisable concerning more
complicated graphs than the self-energy. On the other hand, I have found in[139] striking
evidence for new symmetries in theθ-expanded action which eliminates several divergences
expected from the counting of allowed divergences modulo field redefinitions. Finally, we
have shown in[146] that the use of theθ-expanded�-product (6) without application
of the Seiberg–Witten map leads (up to field redefinitions) to exactly the same result.
Thus, the Seiberg–Witten map is merely an unphysical (but convenient) change of variables
[147].

Recently, phenomenological investigations ofθ-expanded field theories became popular
[148,149]. However, quantitative statements are delicate because in presence of a new field
θµν, many new terms in the action are not only possible but in fact required by renormal-
isability [146] or the desire to cure the UV/IR-problem[150]. Moreover, deformed spaces
are too rigid to be a realistic model[151].

5.5. Noncommutative space-time

I have to stress that all mentioned contributions refer to a Euclidean space and a def-
inition of the quantum field theory via the partition function (the Euclidean analogue of
the path integral). It was pointed out in[152] that a simple Wick rotation doesnot give a
meaningful theory on Minkowskian space-time, first of all because unitarity is lost[153–
155]. The original proposal[2] of a quantum field theory on noncommutative space-time
stayed within the Minkowskian framework, but later work started from Feynman graphs,
the admissibility of a Wick rotation taken (erroneously) for granted. To obtain a consistent
Minkowskian quantum field theory, it was proposed in[152] to iteratively solve the field
equations̀a la Yang-Feldman[156]. See also[157]. Other possibilities are a functional
formalism for the S-matrix[158] and time-ordered perturbation theory[159,160]. See also
[161,162]. Unfortunately, the resulting Feynman rules become so complicated that apart
from tadpole-like diagrams[161] it seems impossible to perform perturbative calculations in
time-ordered perturbation theory. Moreover, it seems impossible to preserve Ward identities
[163].

On the other hand, the rôle of time in noncommutative geometry is not completely clear.
Time should be established around the ideas presented in[164]. For general approaches to
Minkowskian noncommutative spaces I refer to[165–167]. There is a recent proposal[168]
to combine spectral geometry with local covariant quantum field theory.
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6. Renormalisation of noncommutativeφ4-theory to all orders

After the previous unsuccessful attempts to renormalise noncommutative quantum field
theories, the last resort is a more careful way of performing the limits in the spirit of Wilson
[169] and Polchinski[170]. Early attempts[171,172]did not notice the new effects in
higher-genus graphs of noncommutative field theories, which are not visible in one-loop
calculations. A rigorous treatment exists for the large-θ limit [173,174]. Eventually, the
Wilson–Polchinski programme for noncommutativeφ4-theory was realised in the series of
papers[175,176,55]I have written with Harald Grosse. The main ideas are summarised in
[177]. We achieved the remarkable balance of proving renormalisability of theφ4-model to
all orders and reconfirming the UV/IR-duality of[106]. Our proof rests on two concepts14:

• the use of the harmonic oscillator base of the Moyal plane, which avoids the phase factors
appearing in momentum space;

• the renormalisation by flow equations.

The renormalisedφ4-model corresponds to the classical action

S =
∫

d4x

(
1

2
∂µφ � ∂µφ + @2

2
(x̃µφ) � (x̃µφ) + µ2

2
φ � φ + λ

4!
φ � φ � φ � φ

)
(x),

(46)

with x̃µ := 2(θ−1)µν xν. The appearance of the harmonic oscillator term (@2/2)(x̃µφ) �
(x̃µφ) in the action(46) is a result of the renormalisation proof.

6.1. Theφ4-action in the matrix base

We assume for simplicity thatθ ≡ θ12= − θ21 = θ34= − θ43 are the only nonvanishing
components. Expanding the fields in the harmonic oscillator base(10)of the Moyal plane,
φ(x) =∑m1,n1,m2,n2∈N φm1 n1

m2 n2

fm1n1(x1, x2)fm2n2(x3, x4), the action(46) takes the form

S[φ] = (2πθ)2
∑

m,n,k,l∈N2

(
1

2
φmnGmn;klφkl + λ

4!
φmnφnkφklφlm

)
, (47)

Gm1 n1

m2 n2 ; k
1 l1

k2 l2
=
(
µ2+2+2@2

θ
(m1+n1+m2+n2+2)

)
δn1k1δm1l1δn2k2δm2l2

−2−2@2

θ

(√
k1l1δn1+1,k1δm1+1,l1+

√
m1n1δn1−1,k1δm1−1,l1

)
δn2k2δm2l2

−2−2@2

θ

(√
k2l2δn2+1,k2δm2+1,l2+

√
m2n2δn2−1,k2δm2−1,l2

)
δn1k1δm1l1.

(48)

14 Meanwhile, a new renormalisation proof has been elaborated[178] which is based on a multi-scale analysis
of the model.
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The quantum field theory is constructed as a perturbative expansion about the free theory,
which is solved by the propagator�mn;kl, the inverse ofGmn;kl. After diagonalisation of
Gmn;kl (which leads to orthogonal Meixner polynomials, see[179]) and the use of identities
for hypergeometric functions one arrives at

�m1 n1

m2 n2 ; k
1 l1

k2 l2
= θ

2(1+@)2
δm1+k1,n1+l1δm2+k2,n2+l2

(m1+l1)/2∑
v1=(|m1−l1|)/2

(m2+l2)/2∑
v2=(|m2−l2|)/2

×B

(
1+µ2θ

8@
+1

2
(m1+k1+m2+k2)−v1−v2,1+2v1+2v2

)

× 2F1

(
1+2v1+2v2, µ2θ

8@ − 1
2(m1+k1+m2+k2)+v1+v2

2+µ2θ

8@ + 1
2(m1+k1+m2+k2)+v1+v2

∣∣∣∣∣ (1−@)2

(1+@)2

)

×
(

1−@

1+@

)2v1+2v2

×
2∏

i=1

√√√√( ni

vi+ ni−ki

2

)(
ki

vi+ ki−ni

2

)(
mi

vi+mi−li

2

)(
li

vi+ li−mi

2

)
.

(49)

It is important that the sums in(49)are finite.

6.2. Renormalisation group approach to dynamical matrix models

The (Euclidean) quantum field theory is defined by the partition function

Z[J ] =
∫
D[φ] exp

(
−S[φ] − (2πθ)2

∑
m,n

φmnJnm

)
. (50)

The idea inspired by Polchinski’s renormalisation proof[170] of commutativeφ4-theory
is to change the weights of the matrix indices in the kinetic part ofS[φ] as a smooth
function of an energy scale� and to compensate this by a careful adaptation of the ef-
fective actionL[φ,�] such thatZ[J ] becomes independent of the scale�. If the mod-
ification of the weights of a matrix indexm ∈ N is described by a functionK(m/θ�2),
then the required�-dependence of the effective action is given by the matrix Polchinski
equation

�
∂L[φ,�]

∂�
=
∑
m,n,k,l

1

2
(2πθQnm;lk(�))

×
(
∂L[φ,�]

∂φmn

∂L[φ,�]

∂φkl

− 1

(2πθ)2

∂2L[φ,�]

∂φmn∂φkl

)
, (51)
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where

2πθQmn;kl(�) := �
∂

∂�


 ∏

i∈m1,m2,...,l1,l2

K

(
i

θ�2

)
�mn;kl(�)


 . (52)

We look for a perturbative solution of the matrix Polchinski equation(51). In terms of the
expansion coefficients

L[φ,�] =
∞∑

V=1

λV
2V+2∑
N=2

(2πθ)(N/2)−2

N!

∑
m1,ni∈N2

A(V )
m1n1;...;mNnN

[�]φm1n1 · · ·φmNnN

(53)

of the effective action, the matrix Polchinski equation(51) is represented byribbon graphs:

(54)

An internal double line symbolises the propagatorQmn;kl(�). In this way, very compli-
cated ribbon graphs can be produced which cannot be drawn any more in a plane. A ribbon
graph represents a simplicial complex for a Riemann surface and thus defines the topology
of the Riemann surface on which it can be drawn. The Riemann surface is characterised by
its genusg computable via the Euler characteristic of the graph,g = 1 − (1/2)(L − I + V ),
and the numberB of holes. Here,L is the number of single-line loops if we close the ex-
ternal lines of the graph,I is the number of double-line propagators andV the number of
vertices. The numberBof holes coincides with the number of single-line cycles which carry
external legs. Accordingly, we also label the expansion coefficients in(53)by the topology,
A

(V,B,g)
m1n1;...;mNnN .
We have proven in[175] a power-counting estimation for these coefficients which relates

the�-scaling of a ribbon graph to the topology of the graph and to two asymptotic scaling
dimensions of the differentiated cut-off propagatorQmn;kl(�). As a result, if these scaling di-
mensions coincide with the classical momentum space dimensions, then all nonplanar graphs
are suppressed by the renormalisation flow. This is a necessary requirement for the renor-
malisability of a model. On the other hand, as the expansion coefficientsA(V )

m1n1;...;mNnN
[�]

carry an infinite number of matrix indices, the general power-counting estimation proven in
[175] leaves, a priory, an infinite number of divergent planar graphs. These planar graphs
require a separate analysis.
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6.3. Power-counting behaviour of the noncommutativeφ4-model

The key is the integration procedure of the Polchinski equation(54), which involves
the entire magic of renormalisation. We consider the example of the planar one-particle
irreducible four-point function with two vertices,A(2,1,0)1PI

m1n1;...;mNnN
. The Polchinski equation

(54)provides the�-derivative of that function:

(55)

Performing the�-integration of(55)from some initial scale�0 (sent to∞ at the end) down to
�, we obtainA(2,1,0)1PI

mn;nk;kl;lm[�] ∼ ln(�0/�), which diverges for�0 → ∞. Renormalisation can
be understood as the change of the boundary condition for the integration. Thus, integrating
(55)from a renormalisation scale�R up to�, we haveA(2,1,0)1PI

mn;nk;kl;lm[�] ∼ ln(�/�R), and there
would be no problem for�0 → ∞. However, since there is aninfinite numberof matrix
indices and there is no symmetry which could relate the amplitudes, that integration procedure
entails an infinite number of initial conditionsA(2,1,0)1PI

mn;nk;kl;lm[�R]. To have a renormalisable
model, we can only afford a finite number of integrations from�R up to�. Thus, the correct
choice is

(56)

The second graph in the first line on the rhs and the graph in brackets in the last line are
identical, because only the indices on the propagators determine the value of the graph.
Moreover, the vertex in the last line in front of the bracket equals 1. Thus, differenti-
ating (56) with respect to� we obtain indeed(55). As a further check one can con-
sider(56) for m = n = k = l = 0. Finally, the independence ofA(2,1,0)1PI

mn;nk;kl;lm[�0] on the in-
dicesm, n, k, l is built-in. This property is, for�0 → ∞, dynamically generated by the
model.

There is a similar�0–�R-mixed integration procedure for the planar 1PI two-point func-
tionsA(V,1,0)1PI

m1 n1

m2 n2 ; n
1 m1

n2 m2

,A(V,1,0)1PI
m1 + 1 n1 + 1
m2 n2 ; n

1 m1

n2 m2

,A(V,1,0)1PI
m1 n1

m2 + 1 n2 + 1 ; n
1 m1

n2 m2

and all otherA(V,1,0)1PI
mn;nk;kl;lm. These

involve in total four different sub-integrations from�R up to�. I refer to[55] for details.
All other graphs are integrated from�0 down to�, e.g.
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(57)

Theorem 1. The previous integration procedure yields

|A(V,B,g)
m1n1;...;mNnN

[�]| ≤ (
√
θ�)(4−N)+4(1−B−2g)

×P4V−N

[
max(‖m1‖, ‖n1‖, . . . , ‖nN‖)

θ�2

]
P2V−(N/2)

[
ln

�

�R

]
,

(58)

wherePq[X] stands for a polynomial of degree q in X.

Idea of the proof. For the choiceK(x) = 1 for 0 ≤ x ≤ 1 andK(x) = 0 for x ≥ 2 of the
cut-off function in(52)one has

|Qmn;kl(�)| < C0

@θ�2
δm+k,n+l. (59)

Thus, the propagator and the volume of a loop summation have the same power-counting
dimensions as a commutativeφ4-model in momentum space, giving the total power-counting
degree 4− N for anN-point function.

This is (more or less) correct for planar graphs. The scaling behaviour of nonplanar graphs
is considerably improved by thequasi-localityof the propagator:

(60)

As a consequence, for given indexm of the propagatorQmn;kl(�) = , the contribution
to a graph is strongly suppressed unless the other indexl on the trajectory throughm is close
tom. Thus, the sum overl for givenmconverges and does not alter (apart from a factor@−1)
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the power-counting behaviour of(59):∑
l∈N2

(
max
n,k

|Qmn;kl(�)|
)

<
C1

θ@2�2
. (61)

In a nonplanar graph like the one in(57), the indexn3 – fixed as an external index – localises
the summation indexp ≈ n3. Thus, we save one volume factorθ2�4 compared with a true
loop summation as in(56). In general, each hole in the Riemann surface saves one volume
factor, and each handle even saves two.

A more careful analysis of(49) shows that also planar graphs get suppressed with∣∣∣∣∣Qm1 n1

m2 n2 ; k
1 l1

k2 l2
(�)

∣∣∣∣∣ < C2
@θ�2

∏2
i=1

(
max(mi,li)+1

θ�2

)|mi−li|/2
, for mi ≤ ni, if the index along a tra-

jectory jumps. This leaves the functionsA(V,1,0)1PI
mn;nk;kl;lm, A(V,1,0)1PI

m1 n1

m2 n2 ; n
1 m1

n2 m2

, A(V,1,0)1PI
m1 + 1 n1 + 1
m2 n2 ; n

1 m1

n2 m2

and

A
(V,1,0)1PI
m1 n1

m2 + 1 n2 + 1 ; n
1 m1

n2 m2

as the only relevant or marginal ones. In these functions one has to use

a discrete version of the Taylor expansion such as∣∣∣∣∣Qm1 n1

m2 n2 ; n
1 m1

n2 m2

(�) − Q 0 n1

0 n2 ; n
1 0

n2 0
(�)

∣∣∣∣∣ < C3

@θ�2

(
max(m1,m2)

θ�2

)
, (62)

which can be traced back to the Meixner polynomials. The discrete Taylor subtractions are
used in the integration from�0 down to� in prescriptions like(56):

(63)

This explains the polynomial in fractions like‖m‖/θ�2 in (58).
As the estimation(58) is achieved by a finite number of initial conditions at�R (see

(56)), the noncommutativeφ4-model with oscillator term is renormalisable to all orders in
perturbation theory. These initial conditions correspond to normalisation experiments for
the mass, the field amplitude, the coupling constant and the oscillator frequency in the bare
action related to(46). The resulting one-loopβ-functions are computed in[180].

We have also proven renormalisability of the two-dimensional case in[176], where the
oscillator frequency required in intermediate steps can be switched off at the end.
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[148] X. Calmet, B. Juřco, P. Schupp, J. Wess, M. Wohlgenannt, The standard model on non-commutative space-
time, Eur. Phys. J. C23 (2002) 363–376,hep-ph/0111115.
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